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Motivated by recent experiments, we investigate the electron-vibron coupling in suspended carbon nanotube
quantum dots, starting with the electron-phonon coupling of the underlying graphene layer. We show that the
coupling strength depends sensitively on the type of vibron and is strongly sample dependent. The coupling
strength becomes particularly strong when inhomogeneity-induced electronic quantum dots are located near
regions where the vibronic mode is associated with large strain. Specifically, we find that the longitudinal
stretching mode and the radial breathing mode are coupled via the strong deformation potential, while twist
modes couple more weakly via a mechanism involving modulation of the electronic hopping amplitudes
between carbon sites. A special case are bending modes: for symmetry reasons, their coupling is only quadratic
in the vibron coordinate. Our results can explain recent experiments on suspended carbon nanotube quantum
dots, which exhibit vibrational sidebands accompanied by the Franck-Condon blockade with strong electron-
vibron coupling.
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I. INTRODUCTION

The coupling of electronic and mechanical degrees of
freedom is a promising research avenue in the physics of
nanoscale systems.1–3 The detection of electromechanical os-
cillations in suspended graphene4 and carbon nanotubes5 rep-
resents the current frontier in the field of nanoscale resona-
tors. Suspended carbon nanotubes �CNTs� constitute a
particularly interesting model system due to their remarkable
electronic properties inherited from the carbon honeycomb
structure, their high mobility, as well as their many-faceted
mechanical properties such as low dissipation.6 This is high-
lighted by several recent experiments on suspended CNT
quantum dots, which observe pronounced vibrational effects
in electronic transport.7–12 These experiments focus on vibra-
tional sidebands in the Coulomb blockade regime and sug-
gest the existence of rather strong but sample-dependent
electron-vibron coupling, at least for certain vibron modes.
Indeed, of the many vibrational modes of CNT, only the
radial breathing mode7 and the longitudinal stretching
mode8,10–12 have been observed in transport experiments.
The electron-vibron coupling strength seems to vary widely,
with some experiments showing only weak, if any, vibronic
effects,9 while others exhibit well-pronounced vibrational
sidebands or even the Franck-Condon blockade.8,10–12

Most of the corresponding theoretical analysis so far8,13–15

focused on an electron-vibron coupling of an extrinsic elec-
trostatic origin. The basic idea behind this extrinsic coupling
is the mechanical deformation of the nanotube induced by
the electrostatic interaction between the charge on the nano-
tube and, e.g., a nearby gate electrode. A viable theory of
electron-vibron coupling in CNT quantum dots needs to ad-
dress the following points which we address in this paper: �i�
The estimates so far do not succeed in justifying the large
values of the coupling constant � exhibited by some samples.
�ii� A criterion to determine which vibron modes contribute
mostly is needed. �iii� The measured electron-vibron cou-
pling is strongly sample dependent.

In this paper we address these issues by analyzing the
contribution to the electron-vibron coupling originating from

the intrinsic electron-phonon coupling in CNT. This intrinsic
coupling originates from two principal mechanisms:16–20 �i�
The deformation-induced modification of bond lengths in-
duces modulations of the electron hopping in the honeycomb
lattice. �ii� Distortions induce a local variation in areas and
generate a deformation potential. It is interesting to mention
that these two coupling mechanisms manifest themselves
quite differently in an effective Dirac equation of the elec-
tronic degrees of freedom, which we employ in this work.
While the deformation potential enters the Dirac equation as
a scalar potential, the bond length modifications enter as a
gauge field.16–19,21

The coupling constant of the deformation potential is es-
timated to be about an order of magnitude larger than the
corresponding one for hopping modulations.17 When com-
bined with symmetry arguments, this allows one to identify
which modes couple most strongly to electrons. Longitudinal
stretching modes as well as radial breathing modes involve
local area variations and couple strongly via the deformation
potential, while transverse twist modes involve pure shear
and thus couple only via the weaker hopping-modulation
mechanism. Finally, bending modes, though coupling via the
dominant deformation potential, interact only quadratically
with electrons, since for symmetry reasons their effect can-
not depend on the sign of the associated deformation. Thus,
longitudinal stretching modes and radial breathing modes are
the natural candidates to couple strongly to electrons, in
agreement with experimental conclusions.7,8,10–12

To quantify the strength of the electron-vibron coupling in
suspended CNT quantum dots, we employ a mapping to an
Anderson-Holstein model,22–26 which appropriately de-
scribes transport through vibrating quantum dots with a dis-
crete electronic spectrum. This model assumes that transport
occurs through an isolated electronic state coupled to few
vibrational modes of the nanostructure. The corresponding
dimensionless coupling constant � is given by the shift of the
vibron coordinate �induced by the tunneling electron� mea-
sured in units of the amplitude of its quantum fluctuations
�i.e., the oscillator length�. An alternative parameter, often
employed in experimental works is g=�2. To lowest order,
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vibron modes will induce vibrational sidebands when the
corresponding electron-vibron coupling g is of order unity.
The sidebands will be accompanied by the Franck-Condon
blockade25,26—a low-bias suppression of the current—when
g�1.

The coupling parameter g does not only depend on the
specific vibron mode but is also sample specific, for at least
two reasons: �i� It is sensitive to the geometrical details �ra-
dius or length� of the CNT, e.g., through the oscillator length
of the vibron. �ii� It is sensitive to the location of the CNT
quantum dot due to the strain profile of the vibron mode.
Despite this sample dependence, we can give estimates of
typical values of g due to the intrinsic electron-vibron cou-
pling for the different vibron modes of the CNT quantum
dots. For the longitudinal stretching mode, we find upper
limit estimates which are significantly larger than unity. This
is consistent with the observation of vibrational
sidebands8,10–12 and of the Franck-Condon blockade.12

The paper is organized as follows. In Sec. II we briefly
review several ingredients required to analyze the electron-
vibron coupling in carbon nanotube quantum dots. Specifi-
cally, this includes the elastic theory of long-wavelength
phonons in CNT, the electronic properties of CNT in terms
of the effective Dirac theory of graphene, the formation of
CNT quantum dots, and the microscopic electron-phonon
coupling in CNT. Section III contains a detailed discussion
of the dimensionless electron-vibron coupling constants of
the various vibron modes for CNT quantum dots, and con-
tains the central results of the paper. This section also dis-
cusses our results in relation to recent experiments. We con-
clude and summarize in Sec. IV. Some calculational details
are relegated to an appendix.

II. PHONONS AND ELECTRONS IN CNT

A. Vibron modes in suspended CNT

The acoustic phonon branches of CNT can be described
within the elastic theory of a cylindrical membrane. A CNT
with radius r can be viewed as a folded graphene sheet de-
scribed by the elastic Lagrangian density16,17,27

L = T − Vstretch − Vbend �1�

with

T =
�0

2
�u̇2 + ḣ2� ,

Vstretch = �uij
2 +

1

2
�ukk

2 ,

Vbend =
1

2
���2h +

h

r2�2

, �2�

in terms of the mass density �0, the Lamé coefficients � and
� characterizing the in-plane rigidity of the lattice, and the
bending rigidity �. In Eq. �2�, uij denotes the strain tensor of
a cylindrical membrane whose components are27

uxx = �xux +
h

r
, uyy = �yuy ,

2uxy = �xuy + �yux, �3�

up to linear order in the tangential and radial distortions ui�r�
and h�r�, respectively. Here we introduced x and y coordi-
nates for the cylinder, fixing the y axis along the CNT axis,
while the x axis is the curvilinear coordinate around its waist
�see Fig. 1�. The strain tensor of a cylindrical membrane
contains the additional term h /r in uxx with respect to a flat
two-dimensional �2D� membrane, describing the strain in-
duced by a uniform change in h. In addition, the finite cur-
vature of the CNT induces the extra term h /r2 in the bending
energy. One readily finds that the strain vanishes for distor-
tions described by

ux = −
u

n
sin�nx

r
� ,

uy = constant,

h = u cos�nx

r
� , �4�

with n integer.28 In particular, the n= �1 case describes a
rigid translation of the tube in a direction perpendicular to its
axis. The term Vbend in Eq. �1� describes the energy cost to
induce a local variation in curvature with respect to the cy-
lindrical geometry. This bending energy vanishes for the
rigid shift Eq. �4� with n= �1, but produces a gap for the
�n��2 modes which guarantees the stability of the cylindri-

a)

b)

c)

d)

e)

f)

x

y

FIG. 1. Schematic description of the acoustic phonon modes of
CNT. �a� Unperturbed nanotube. �b� Stretching mode. �c� Breathing
mode. �d� Twist mode. �e� Bending mode with n=1 at finite q. �f�
Bending mode with n=2 and q=0.
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cal shape of the tube. From now on we focus for simplicity
on positive n only.

The Euler-Lagrange equations for the Lagrangian Eq. �1�
and the resulting phononic branches are discussed in the Ap-
pendix. The distortions involved in stretching, breathing,
twist, and bending modes are depicted in Fig. 1. The corre-
sponding long-wavelength �i.e., qr�1� dispersions are given
by

	n=0,qr�1
�Stretch� = vStretchq ,

	n=0,qr�1
�Twist� = vTwistq ,

	n=0,qr�1
�Breath� � 	B = ��Ar2 + ��/��0r4� ,

	n=1,qr�1
�Bend� � �qr�2��A − ���A − ��

A�0r2 ,

	n�2,qr�1
�Bend� � �n2 − 1

r2 �� �

�0
·

n2

n2 + 1
. �5�

Here, the group velocities of the stretching and twist modes
are vStretch=��A2−�2� / �A�0� and vTwist=�� /�0, with A=2�
+�. The n=1 bending mode has a quadratic dispersion remi-
niscent of the flexural phonon modes in graphene.19 Unlike
the graphene case, however, its dispersion is mostly deter-
mined by stretching energies due to the finite curvature of the
nanotube. The dispersion of the breathing mode is character-
ized by a finite frequency 	B at long wavelengths. For typi-
cal parameters,17,29 one finds Ar2�50 eV·L�

2 �nm	
� for
any realistic nanotube. The bending modulus can thus be
neglected in the dispersion of the breathing mode. The
corresponding q=0 energy gap is then �	B
�8·10−2 eV /L��nm	, with L�=2�r denoting the circum-
ference of the tube. As an example, the �10,10� armchair
CNT with r�7 Å has �	B�2·10−2 eV, which makes the
breathing mode frequently too high in energy to be excited in
low-bias transport measurements.

In experiments, CNT are clamped by contacts to leads at
two points separated by a distance L. The wave-number
quantization q=m�� /L �with m� an integer number� yields
discrete phonon oscillator modes, called vibrons. These con-
tacts will also frequently induce tension in the CNT, which
can be included into the elastic Lagrangian Eq. �2� by the
modification

Vbend → Vbend + ��yh�2, �6�

where  measures the tension applied at the ends of the tube.
The parameter  is thus sample as well as temperature de-
pendent. Tension modifies the dispersion of the bending
modes into

	n�1,q
�Bend,Tens� =�	n�1,q

�Bend�2 +


�0
q2. �7�

The dispersion of the n=1 mode thus becomes linear at small
momenta and crosses over to a quadratic dependence at
higher momenta. The gapped bending modes with n�2 are
less sensitive to tension.

B. Electronic states in CNT quantum dots

Dirac Hamiltonian for CNT. The electronic properties of
CNT can be conveniently described in terms of the low-
energy effective Dirac Hamiltonian of electrons in
graphene,30

H = �v� · k �8�

with velocity v�106 m·s−1, where the 2D wave number k
is measured from the relevant Dirac point �kD, with kD
=2� / �3�3a���3,1� and a=1.42 Å the bond length. The
Hamiltonian in Eq. �8� acts on four-component spinors
�uA,k

+ ,uB,k
+ ,uB,k

− ,uA,k
− � of Bloch amplitudes in the space

spanned by the honeycomb sublattices �A /B� and Dirac val-
leys �+ /−�. The matrices �x,y =�z � �x,y denote components
of a vector �, with �i and � j the Pauli matrices in the spaces
of the Dirac valleys and the sublattices, respectively. In CNT
the folding of the graphene sheet amounts to identifying dif-
ferent lattice sites of the same type �A or B� separated by a
lattice vector of the form T= m̄T1+ n̄T2, with T1=a�3�0,1�
and T2=a�3 /2��3,1�, denoting two independent generators
of the honeycomb lattice.21 The corresponding nanotube is
denoted as �m̄ , n̄	 and it is customary to introduce the chiral
angle �=arctan�Ty /Tx�. Thus armchair CNTs correspond to
�=0 while zigzag ones stem from �=� /2. Owing to the
underlying Bloch wave function, a translation by T modifies
the Dirac spinors in the two valleys by a multiplicative factor
exp��ikD ·T	. This fact can be accommodated in the Dirac
description of CNT by formally introducing an Aharonov-
Bohm vector potential a�, which induces a fictitious mag-
netic flux � given by �
� /�0= �kD ·T /2�.21 Here �
=�dl ·a� with the line integral taken along a closed loop
around the cylinder waist and �0=h /e is the flux quantum.
Due to flux periodicity, we can restrict attention to
�� �−1 /2,1 /2	. Choosing the x axis for the CNT along its

waist, i.e., x̂= T̂, the electronic eigenstates are proportional to
exp�i�2�lx /L�+ ikyy�	, where l is an integer number. The
low energy Hamiltonian for the CNT thus reads

H = �z � �v��x
2�

L�

�l + �� + �yky . �9�

By direct calculation for a �m̄ , n̄	 nanotube, one obtains �
= � �m̄+2n̄� /3. When � is integer, the corresponding CNT
are metallic characterized by a gapless and linear dispersion.
Other values of m̄ and n̄ lead to semiconducting CNT with
gapped electronic spectra, the smallest gap being given by
�=�v�2� /L�. From now on we will assume that only the
lowest-energy subband l=0 is relevant.

CNT quantum dots. The possibility of opening a gap in
CNT allows for the formation of CNT quantum dots. This
can be achieved by electrostatic potentials for semiconduct-
ing CNT or by inhomogeneities in the graphene folding for
metallic CNT. In general, the location of the quantum dots
along the CNT and their length Ld have no relation with the
overall nanotube size L and can thus be sample specific, as
indicated in Fig. 2.

In semiconducting CNT electron confinement can be in-
duced by an electrostatic potential V�y� �induced intention-
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ally by gates or by disorder� along the tube direction, which
enters the Dirac Hamiltonian as

H = � V�y� � − i�vky

� + i�vky V�y�
� . �10�

Here we consider potentials smooth on the scale of the hon-
eycomb lattice spacing, which allows us to restrict attention
to a single cone of the Dirac description. The physics of
electron confinement can be captured by the simplest choice
for V�y�, namely, a square well potential of magnitude
V�y�=−V0 between y=y0 and y=y0+Ld and zero elsewhere,
with y0 the location of the left edge of the electronic dot and
Ld its extension along the tube direction. �Of course, within
the single Dirac cone approximation the abrupt variation in
the potential still needs to be slow on the scale of the bond
length a.� A potential with V0�� /2 confines electrons in the
dot and depletes occupation outside the region y� �y0 ,y0
+Ld	, yielding quantization of the longitudinal wave number
ky =n�� /Ld, with n��1 an integer. In the limit �vky �� one
gets a vanishing wave function for y�y0 and y�y0+Ld and
a nonvanishing spinor �n�� for y� �y0 ,y0+Ld	,

�n��y� = �y�n�� =
1

�Ld

�1

1
�sin�n���y − y0�

Ld
� , �11�

with energy

En� = � − V0 +
�2v2n�2�2

2Ld
2�

. �12�

In metallic CNT, quantum dots can be induced by a non-
uniformity in the folding vector T. If � is noninteger for y
�y0 and y�y0+Ld, and integer for y� �y0 ,y0+Ld	, the gap
opening outside the dot confines electrons within the metallic
region with integer �. The wave function for y� �y0 ,y0
+Ld	 is then

�n��y� = �y�n�� =
1

�Ld

�1

i
�sin�n���y − y0�

Ld
� �13�

in the limit �vky ��, with a corresponding energy

En� = �v
n��

Ld
. �14�

The potential distribution and energy profiles involved in the
creation of quantum dots in CNT are sketched in Fig. 3.
While vibron modes of the nanotube involve its entire
length, the location and extension of the electronic quantum
dot are essentially determined by inhomogeneities and are in
principle uncorrelated with the nanotube size. This effect is
particularly pronounced in dirty CNT.

C. Electron-phonon coupling in CNT

The coupling between electrons and phonons in graphene
and in nanotubes can be induced by two different
mechanisms.16–19

�i� The deformation potential20 is induced by the local
area variation of the membrane which is associated with a
phonon excitation. Within the Dirac representation in a
single valley, the deformation potential can be written
as16,17,19

Ve−ph
�def� = g1�uxx + uyy�1 . �15�

The corresponding coupling strength has been estimated to
be as large as g1�30 eV.17

�ii� Phonon modes involving pure shear do not induce a
local variation in area and the associated strain has a vanish-
ing trace. These modes couple to electrons only via the
distortion-induced modification of bond lengths in the hon-
eycomb lattice. The corresponding modulation in the elec-
tron hopping translates in the Dirac language into a purely
off-diagonal term, correcting the electronic momentum in the
same way as a �fictitious� gauge field, with vector
potential16–19,21

eA�r,t� =
1

2

�

t

�t

�a
D�− 3�	� 2uxy

�uxx − uyy�
 . �16�

Here t denotes the hopping amplitude, while the rotation ma-
trix D�−3�	=cos 3�1+ i sin 3��y is due to the rotation of the
folding vector T by the angle � with respect to the x-y axes
in graphene. The form of the vector potential is essentially
fixed by the honeycomb lattice symmetry. Combined with
the diagonal deformation potential, the fictitious gauge field
yields the total electron-phonon coupling matrix

Ve−ph = �g1�uxx + uyy� g2ei3�f��uij	
g2e−i3�f�uij	 g1�uxx + uyy�

� , �17�

with f�uij	=2uxy + i�uxx−uyy� and the hopping-modulation
coupling constant g2= �v

2t
�t
�a �1.5 eV.17 The latter is esti-

mated to be much smaller than the corresponding one for the
deformation potential.

Thus, stretching modes and breathing modes induce local
variations in areas, yielding a strong coupling via the defor-

0 Ly
0

+ L
d

y
0

FIG. 2. Schematic description of the electronic quantum dot of
size Ld �in gray� along a carbon nanotube of length L.

E

y∆
V0

0 Ld

E

y∆ 0 Ld

a)

b)

FIG. 3. Schematic description of the electron confinement pro-
ducing quantum dots in semiconducting �a� and metallic �b� carbon
nanotubes. Here y0=0.
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mation potential, while twist modes involve pure shear and
couple to electrons only via the weaker “gauge-field cou-
pling.” For reasons of symmetry, bending modes are qualita-
tively different, as their effect on the electronic energy can-
not depend on the sign of the associated deformation. Indeed,
we will show that they yield a vanishing expectation value of
the strain on the electronic states in first order in the dis-
placement fields. Hence, bending modes require an analysis
of the strain tensor of the cylindrical membrane to quadratic
order. A lengthy but straightforward calculation yields

uxx = �xux +
h

r
+

1

2
���xh −

ux

r
�2

+ �h

r
+ �xux�2

+ ��xuy�2 ,

uyy = �yuy +
1

2
���yh�2 + ��yux�2 + ��yuy�2	 ,

2uxy = �xuy + �yux + ��xh���yh� −
ux

r
��yh� +

h

r
��yux�

+ ��xux���yux� + ��xuy���yuy� .

One readily checks that this result respects the requirement
that the rigid translation described by Eq. �4� with n=1 is
strain free. As will be discussed in detail in the next session,
for the n=1 bending mode a finite coupling mediated pre-
dominantly by the deformation potential can be obtained
only at finite q, while modes with n�2 couple also for q
=0. Having established the form of the microscopic electron-
phonon interaction in the language of the Dirac hamiltonian,
we are now ready to systematically analyze the strength of
the coupling for different types of vibrons in CNT quantum
dots.

III. ELECTRON-VIBRON COUPLING IN CNT
QUANTUM DOTS

Electronic transport through quantum dots located in sus-
pended carbon nanotubes is adequately described by an �ex-
tended� Anderson-Holstein model. Motivated by experi-
ments, we will focus on the limit in which the vibrational
frequencies are small compared to the electronic level
spacing.31 Then, we can effectively restrict attention to a
single electronic state coupled to several vibrational modes.
We emphasize, however, that the parameters of the model
can depend on the particular electronic state under consider-
ation.

We now use the results reviewed in the previous section
in order to evaluate the electron-vibron coupling entering
into the Anderson-Holstein Hamiltonian for a CNT quantum
dot,23–26

H = Hel + Hvib + Hleads + HT,

Hel = �
s=↑,↓

�
�,q

�� + �q
����	q

����bq
���† + bq

���� j	ns + Un↑n↓,

Hvib = �
�,q

�	q
���bq

���†bq
���. �18�

Here Hel+Hvib describes the electronic and vibronic proper-
ties of the CNT quantum dot, while Hleads+HT describes the
leads and the tunneling of electrons between the leads and
the dot. In Eq. �18�, ns is the electron number operator with
spin s, � the energy of the electron state, and U the repulsion
energy for double occupancy of the dot. The operator bq

���

annihilates the vibron mode of type � ��=Stretch, Twist,
Breath, Bend� and wave number q, with energy �	q

���. The
electron-vibron interaction in Hel can be linear �j=1� or qua-
dratic �j=2� in the vibronic operators, depending on the vi-
bron mode under consideration. While the electron-phonon
coupling in infinite CNT has been discussed in the
literature,16–18 in our work we decouple the size of the vibron
from that of the electronic dot. As shown below, this will
allow us to obtain large electron-vibron coupling constants,
which are strongly sample specific, in agreement with the
recent experimental findings.

In order to compute the dimensionless electron-vibron
coupling constant �q

���, we rewrite the electronic Hamiltonian
Hel in terms of the vibronic displacement operator uq

���

= �bq
���+bq

���†�losc,q
��� /�2 as

Hel = �
s=↑,↓

�
�,q
�� + �q

�����2uq
���

losc,q
��� � j

�	q
���ns + Un↑n↓,

�19�

with the oscillator length losc,q
��� =�� /M	q

��� and M =�0LL� the
oscillator mass. We can now identify the electron-vibron
coupling constant �q

��� with the shift in the energy of the
localized electronic state induced by a static vibron displace-
ment uq

���= losc,q
��� /�2, measured in units of �	q

���. This shift
can be readily computed in perturbation theory, employing
the intrinsic electron-vibron coupling Ve−ph in Eq. �17�. We
find that first-order perturbation theory suffices. Thus, an
electronic state �n�� of the dot is shifted by ��q,n��uq

����
= �n��Ve−ph�uq

�����n�� for a given vibron displacement uq
���,

e.g., for a semiconducting dot, the expectation value is taken
with the electronic state Eq. �11�. As a result, we obtain the
expression

�q,n�
��� =

��q,n��uq
��� = losc,q

��� /�2�

�	q
��� �20�

for the dimensionless coupling constant �q,n�
��� .

In order to analyze the value of �q,n�
��� for the various vi-

bron modes, we assume that the nanotube extends between
y=0 and y=L, while the electronic wave function in the dot
exists in the interval y� �y0 ,y0+Ld	, as depicted in Fig. 2.
The various vibrons have a quantized wave number q
=m�� /L along y, with m� an integer number �the index q
will be replaced by the corresponding m� from now on�. We
start considering the n=0 modes.

Stretching mode. The stretching mode implies local area
variations inducing a deformation potential together with
hopping modulations, which amount, in the Dirac language,
to the electron-phonon coupling matrix
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Ve−ph
�Stretch� = � g1�yuy ig2�yuye

i3�

− ig2�yuye
−i3� g1�yuy

� . �21�

Within the qr�1 regime, the stretching mode is described by
uy =u sin�m��y /L�, ux=0 and h�−iqr� /Auy �uy. Its linear
coupling to electrons is dominated by the uyy component in
the deformation potential �while we neglect uxx�−� /Auyy
due to the small ratio � /A�0.1�, resulting in the electronic
energy shift

��m�,n�
�Stretch��u� = 2g1u

m��

L

Im�,n�

Ld
, �22�

where we introduced

Im�,n� = �
y0

y0+Ld

dy cos�m��y

L
�sin2�n���y − y0�

Ld
�

=
L

m��

sin�m��Ld

2L
�cos�m���2y0 + Ld�

2L
�

1 − �m�Ld

2n�L
�2 . �23�

Exploiting Eq. �20� we deduce

�m�,n�
�Stretch� =

�2g1losc,m�
�Stretch�

�vStretch

Im�,n�

Ld
. �24�

Due to the coupling to electrons mediated by the dominant
deformation potential and to their gapless dispersion, stretch-
ing vibrons are natural candidates to produce a large
electron-vibron coupling. The result in Eq. �24� shows that
the coupling constant can be strongly sample specific, as it
crucially depends on the geometric details of the nanotube
and on the location and size of the CNT quantum dot �hidden
in Im�,n��.

In order to address this point we first consider the regime
of very clean CNT, in which the dot size coincides with the
total nanotube length �i.e., y0=0, Ld=L�. In this case we have
Im�,n�

�Ld=L,y0=0�=−�m�,2n�L /4, yielding

�m�,n�,clean
�Stretch� = − �m�,2n�

g1losc,m�
�Stretch�

2�2�vStretch

. �25�

The interference between vibronic and electronic wave func-
tions thus leads to strong selection rules suppressing the con-
tribution of most vibron modes. The detectable ones are
characterized by a coupling constant

�m�,n�,clean
�Stretch� � − �m�,2n�

1.5
�m�L��nm	

. �26�

Only the long-wavelength modes in thin CNT can reach the
strong coupling regime, where vibron signatures in transport
may emerge.

As the location and size of the quantum dot is not in
general related to the overall CNT length, we can consider
the opposite limit of a small dot, Ld�L, where we obtain

Im�,n�
�Ld�L� �

Ld

2
cos�m��y0

L
� . �27�

This result stresses once more the strong sample dependence
of the electron-vibron coupling strength. If the dot localizes
in regions involving weak vibron-induced strain the coupling
constant � can be extremely small. In contrast, dots localized
around the regions of maximal strain in the tube can reach
values up to ��m�,n�,max

�Stretch� �u�=g1um�� /L. This leads to a maxi-
mal coupling

�m�,n�,max
�Stretch� �

3
�m�L��nm	

, �28�

where we used the stretching mode dispersion �5� in the os-
cillator length. We point out that vibron branches with a lin-
ear dispersion have a coupling which depends only on the
nanotube circumference, not on its length. Remarkably, this
coupling constant can be quite large for thin nanotubes with
typical L� in the nanometer range. For them, the measured
coupling constant g=�2 for the lowest vibron mode can be of
order 10, in agreement with recent experiments.8,10–12 While
we focus on the coupling of vibrons with localized electronic
wave functions, the deformation potential contribution to the
coupling between the stretching mode and the bosonic exci-
tations of a Luttinger model for a very long CNT has been
discussed previously.14 This analysis however resulted in a
very small coupling constant.

Breathing mode. The breathing mode has a very weak
momentum dependence in the qr�1 regime. It is described
by ux=uy =0, h=u and by the coupling

Ve−ph
�Breath� =

h

r
� g1 − ig2ei3�

ig2e−i3� g1
� , �29�

with a dominant deformation potential component. A similar
analysis to that for the stretch mode above leads to
���Breath��u�=g1u /r and to the coupling constant

��Breath� =
g1losc

�Breath�

�2r�	B

�
7 · 10−2

�L��m	
. �30�

Contrary to the stretching mode, this coupling constant de-
pends only on the total tube length but is otherwise indepen-
dent of the vibronic and electronic wave numbers and is not
affected by the localization properties of the electronic wave
function. With this respect, the breathing mode dimension-
less coupling is a much less sample specific quantity. Despite
the coupling being mediated by the deformation potential,
the large breathing mode gap significantly suppresses the os-
cillator length as well as the final value of the electron-
vibron coupling constant.

Twist mode. Twist modes are associated with deforma-
tions given by ux=u sin�qy� and uy =h=0. Thus they induce
a pure shear yielding, for a given displacement, a hopping-
modulation coupling �see Eq. �17�	,
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Ve−ph
�Twist� = g2� 0 ei3��yux

e−i3��yux 0
� �31�

to the electronic Dirac equation. Focusing on semiconduct-
ing dots, this implies

��m�,n�
�Twist��u� = 2g2u

m��

L
cos�3��

Im�,n�

Ld
. �32�

As a result, using Eq. �20� we deduce

�m�,n�
�Twist� =

�2g2losc,m�
�Twist� cos�3��

�vTwist

Im�,n�

Ld
. �33�

Similarly to stretching modes, the linear dispersion of twist
phonons yields a coupling constant dependent only on the
nanotube circumference. However, the smallness of the fic-
titious gauge-field coupling with respect to the deformation
potential will in the end suppress the twist mode electron-
vibron coupling. In parallel, the latter is sensitive to the CNT
chirality via the cos�3�� factor, yielding a maximal effect on
metallic armchair CNT �with �=0� and a vanishing one for
zigzag CNT �characterized by �=� /2�. In the regime of a
small dot localized around the maximum shear, using Eq.
�27� one can estimate the upper value of the dimensionless
coupling

�m�,n�,max
�Twist� =

g2losc,m�
�Twist� cos�3��

�2�vTwist

. �34�

Replacing the typical parameters of graphene29 in the oscil-
lator length for the twist vibron, we get

�m�,n�,max
�Twist� � 0.17

cos�3��
�m�L��nm	

. �35�

Bending modes. The displacements involved in the bend-
ing vibrons with n�1 are described in detail in the Appen-
dix. It is crucial to notice that at finite momentum q a non-
vanishing component uy is needed in order to correctly
obtain the dispersion of the n=1 mode, while the gapped n
�2 branches are well described by ux=
−u /n sin�nx /r�sin�qy�, h=u cos�nx /r�sin�qy�, and uy =0 in
the long-wavelength regime qr�1 for ��Ar2. For n=1 the
uxx and uyy components of the strain tensor up to linear order
in the vibron displacement are proportional to
�qr�2 cos�x /r�sin�qy�, while uxy � �qr�3 sin�x /r�cos�qy�. Thus
they yield a vanishing expectation value on the
x-independent electronic states. In complete analogy, for n
�2 the expectation value of each component of the strain
tensor on the electronic states vanishes in linear order in the
amplitude of the distortions. We thus need to consider the
strain tensor up to quadratic order as discussed in Eq. �18�.
The expectation value of uxy vanishes again, while those of
uxx and uyy do not, giving rise to a nonvanishing deformation
potential. From the j=2 case in Eq. �19� we get the dominant
energy corrections for qr�1,

��m�,n�
�Bend,n=1��u� = 3g1�u�m�

2L
�2�1

2
+

I2m�,n�

Ld
 ,

��m�,n�
�Bend,n�2��u� = g1

u2

4r2�n −
1

n
�2�1

2
−

I2m�,n�

Ld
 .

The soft bending modes with n=1 behave differently from
those with n�2. The former have a gapless dispersion and a
big oscillator length, while the latter are gapped and have
much smaller quantum fluctuations. The resulting coupling
constants are

�m�,n�
�Bend,n=1� = g1

3�2� + ��
4��� + ��

L

m�2L�
3 �1

2
+

I2m�,n�

Ld
 ,

�m�,n�
�Bend,n�2� =

g1

�

�n2 + 1�
32�2n4

L�

L
�1

2
−

I2m�,n�

Ld
 . �36�

It has to be pointed out that the functions 1
2 � I2m�,n� /Ld are

non-negative for every possible value of m�, n�, y0, and Ld,
implying a positive coupling between electrons and bending
vibrons. This can be understood in terms of the deformation
potential, inducing a positive coupling to electrons for in-
creasing local areas, which is always the case for bending
deformations once compared to the equilibrium straight
nanotube configuration. In parallel, we notice that the
electron-vibron coupling for bending modes is independent
of the graphene mass density but is sensitive to both the
length and the circumference of CNT, as well as to the elec-
tronic localization. In the case of electronic wave functions
sharply localized near the maximum local strain, the
electron-vibron couplings reach the maximum values

�m�,n�,max
�Bend,n=1� �

40

m�2 ·
L��m	
L�

3 �nm	
,

�m�,n�,max
�Bend,n�2� � 10−4n2 + 1

n4 ·
L��nm	
L��m	

. �37�

In terms of transport measurements on suspended CNT, due
to their quadratic coupling bending modes do not produce
significant Franck-Condon blockade nor vibrational side-
bands at large bias. We point out that the apparently large
coupling constant of the soft n=1 mode is in reality sup-
pressed by the fact that all experimentally realized CNT so
far have typical values of L� of several nanometers. As an
example, the �10,10� armchair CNT is characterized by L�

=4.4 nm, yielding �max
�Bend,n=1��L��m	 / �2m�2�. Only the

softest bending vibrons in extremely long and thin freely
suspended CNT could ever reach the regime �max

�Bend,n=1��1.
In addition, in experiments the contact-induced tension in

the CNT stiffens the low-energy dispersion of the n=1 mode
and reduces its oscillator length and coupling strength. In
particular, the coupling constant becomes

��0
�Bend,n=1� = � 	n=1,q

�Bend�

	n=1,q
�Bend,Tens��2

· �=0
�Bend,n=1� �38�

with the n=1 dispersion in Eq. �7�.
We point out that if the CNT shows buckling in its equi-

librium configuration �e.g., via contact-induced compres-
sions at the two ends�, the symmetry argument for bending
modes does not hold and a linear electron-vibron coupling
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appears. In principle, it is straightforward to treat this situa-
tion within the approach presented in this paper. However,
we refrain from giving explicit results here because of the
highly nonuniversal nature of the effect.

IV. CONCLUSIONS

In this paper, we have presented a theory of the intrinsic
electron-vibron coupling in carbon nanotube quantum dots.
This intrinsic coupling originates from the electron-phonon
interaction of the underlying graphene sheet and is associ-
ated with the deformation potential as well as the vibron-
induced modulations of the hopping amplitude. We find that
for several vibron modes, including those most prominently
observed in experiment, this coupling is larger than the pre-
viously considered extrinsic coupling based on electrostatic
interactions between the nanotube and a nearby gate elec-
trode.

Our results are consistent with recent experiments in sev-
eral respects. We find that the most strongly coupled vibron
modes are the radial breathing mode and the longitudinal
stretching mode. In fact, it is these modes which have been
observed in recent transport experiments.7,8,10–12 Moreover,
we obtain the largest coupling constants for the longitudinal
stretching mode, with the maximal dimensionless coupling
exceeding unity, consistent with the recent observation of the
Franck-Condon blockade associated with this vibron mode.12

We also find that quite generally, the electron-vibron cou-
pling is rather sample specific. The coupling depends on the
geometric details of the nanotube such as circumference or
length and, except for the radial breathing mode, is sensitive
to the location of the CNT quantum dot along the vibrating
nanotube.

In very clean CNT, where the quantum dot extends over
the entire length of the vibrating nanotube, we find that the
electron-vibron coupling is subject to selection rules. This
significantly suppresses vibronic signatures in the conduc-
tance which may be responsible for the absence of vibra-
tional features in some experiments on suspended carbon
nanotubes.9

In this paper, we have focused on the intrinsic electron-
vibron coupling in ideal carbon nanotubes. Realistic samples
may also be subject to defects which affect the elastic prop-
erties of the carbon nanotubes. Such defects are expected to
be particularly significant when they bring the CNT close to
an elastic bistability. In connection with experiments, very
recently the effects of nonlinearities in the elastic theory of
nanotubes32 and of electron-phonon interactions33 in the vi-
bronic lifetime have been discussed. Another issue which
remains an interesting topic for future research concerns the
consequences of electronic correlations on the electron-
vibron coupling and on transport in suspended CNT quantum
dots in general.

Experiments on nanoelectromechanical systems are char-
acterized by an increasing ability to design and tune the
sample properties. We expect that the results of the present
paper will contribute to extend this ability to include the
electron-vibron interaction strengths, which may make pre-
viously unexplored parameter regimes accessible.
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APPENDIX

The Euler-Lagrange equations for ux, uy, and h out of the
Lagrangian density Eq. �1� at the harmonic level are

�0üx = A�x
2ux + ��y

2ux + �A − ���x�yuy +
A

r
�xh ,

�0üy = A�y
2uy + ��x

2uy + �A − ���x�yux +
�

r
�yh ,

�0ḧ = − A� h

r2 +
�xux

r
� − �

�yuy

r
− ���x

2 + �y
2 +

1

r2�2

h ,

�A1�

with A=2�+�. Imposing periodic boundary conditions
along the x direction, we look for solutions of Eq. �A1� of the
form ux , uy , h�exp�inx /r+ iqy− i	t	 with q the one-
dimensional wave number along the nanotube axis. For n
=0 we get three equations yielding the twisting, breathing,
and stretching eigenmodes,

�0	2ux = �q2ux,

�0	2uy = Aq2uy − i�
q

r
h ,

�0	2h =
A

r2h + i�
q

r
uy + �� 1

r2 − q2�2

h . �A2�

Twist mode. The first equation in Eq. �A2� yields the twist
mode, with ux=u sin�qy� and uy =h=0. Its dispersion

	n=0,q
�Twist� =��

�0
q �A3�

coincides with that of the transverse in-plane phonon branch
of graphene.19

Breathing mode. The third equation in Eq. �A2� yields the
breathing mode, with finite h and ux=uy =0. Due to the CNT
curvature, at q=0 this distortion yields a finite gap 	B
=��Ar2+�� / ��0r4�. In the qr�1 regime, we extract uy from
the second equation with 	�	B and insert it into the third
one, to get the correction

	n=0,q
�Breath� = 	B�1 + ��qr�2� �A4�

with �= 1
2�1+�� �

�2

A2�1+�� −2�� and �=� /Ar2�1. Notice that
the group velocity of the breathing mode never becomes
negative in realistic CNT.

Stretching mode. The second equation in Eq. �A2� yields
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the stretching mode with finite uy and ux=0. Obtaining h
from the third equation in the regime 	�	B and inserting it
into the second we obtain

	n=0,q
�Stretch� =�A2 − �2

A�0
q �A5�

in lowest order in � /Ar2�1.
Bending modes. Further phononic branches at low energy

originate from n�1. Generalizing the deformations Eq. �4�
at finite q, from the Eqs. �A1� we get the long-wavelength
“bending” modes for qr�1,

ux = −
u

n
sin�nx/r�sin�qy�exp�− i	t	 ,

uy = − uFn�qr�cos�nx/r�cos�qy�exp�− i	t	 ,

h = uGn�qr�cos�nx/r�sin�qy�exp�− i	t	 . �A6�

In the ��Ar2 regime the eigenmodes are described by

F1�x � 1� � x�1 −
4�� + ��

A
x2� ,

G1�x � 1� � 1 −
�

A
x2 +

2�� + ���� + 2��
A2 x4 �A7�

and by

Fn�2�x � 1� �
1

n2x ,

Gn�2�x � 1� � 1 −
�

Ar2

�n2 − 1�2

n2 + 1
−

1

n2

�

A
x2. �A8�

The resulting long-wavelength dispersions are

	n=1,qr�1
�Bend� � �qr�2�2��� + ��

A�0r2 ,

	n�2,qr�1
�Bend� � �n2 − 1

r2 �� �

�0
·

n2

n2 + 1

� �1 + �qr�22n4A + n2�A − 2�� + �A + 2��
2n2�n4 − 1�A � .

�A9�

While the n�2 modes are gapped by the bending energy
cost, the n=1 mode is gapless, with a soft quadratic disper-
sion predominantly determined by the stretching energy
Lamé coefficients � and �.
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